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Part A:  Introduction

Here's an outline for my two talks:

After I give an overview in Part A,  today and tomorrow I'll be indicating how some special colored posets can connect
Lie representation theory to combinatorics.

A1:  Graph & Poset Terminology

A1.1   $  Please allow me begin by establishing some terminology —

In these talks I'll always have one fixed connected graph  Γn  at hand:
it will have  n  nodes and it will be simple,  meaning it won't have loops or multiple edges.

$  I will often refer to its distinct nodes as being distinct "colors":

Often  Γn  will serve as the Dynkin diagram for a Lie algebra.

$  My "directed graphs" may have an infinite number of nodes,
but they also will have no loops or multiple edges.

A1.2   $  A "poset" is a set with a partial order;  the set might be infinite.

The "Hasse diagram" of a poset depicts it with a directed graph.

$  Here's the Hasse diagram for the poset of subsets of the set  {1,2,3}  when they are partially ordered by
containment:

$  Here the subset {1,2,3}   covers   the subset {1,3} and {2,3}   covers   {2}.



A1.3   $  In addition to finite posets,  we will be considering two kinds of infinite posets.

The foremost "singly infinite" poset is the ordered set of the nonnegative integers:

The foremost "doubly infinite" poset is the ordered set of all integers:

$  Most of my posets will be "Γn-colored";
this will mean that their elements are colored using all of the colors from  Γn.

For example,  given this fixed graph of colors  Γn,  this poset is  Γn-colored:

A2:  Simple Lie Algebras, Weyl Groups, Representations

A2.1   $  The simple Lie algebras over the complex numbers are indexed by the connected Dynkin diagrams:

A2.2   $  The foremost example is  s ln+1,  which is the vector space of trace-zero  (n+1) × (n+1)  matrices equipped
with the algebra operation of anti-commutator bracket  [.,.].

$  This Lie algebra is a prototype for all simple Lie algebras  g,  especially the "simply-laced" ones.   Their structures
are very similar to the stucture of  s ln+1.

It will even serve as a prototype for the Kac-Moody Lie algebras,  which I will consider later in these talks.

A2.1(!)   $  The   simply-laced   simple Lie algebras are the ones whose Dynkin diagrams do not have multiple edges,
namely  An, Dn, E6, E7, and E8:

These are the simple Lie algebras of    Types ADE   , which are the ones that I will consider in these talks:

These Dynkin diagrams are connected simple graphs,  and so I will denote these diagrams in general with  Γn.

A2.3   $  Each simple Lie algebra  g  has several finite structures associated to it,
especially its Weyl group  W.

The Weyl group of  s ln+1  is the symmetric group  Sn+1;  here are the orders of the other Weyl groups of Types ADE:

A2.4   $  Given a vector space  V,  the Lie algebra  gl(V)  is the vector space  End(V)  equipped with the anti-
commutator bracket  [.,.]  for linear operators.

A   representation    ϕ  of a Lie algebra   g  on  V  is a Lie algebra homomorphism from  g  to  gl(V).



A2.5(2.4)   $  To describe a representation  ϕ  of the simple Lie algebra  g  indexed by the Dynkin diagram  Γn,

$  We first find the mutual eigenspaces for the actions of its "diagonal" elements.

Each of these eigenspaces has an associated  n-tuple of eigenvalues.

These  n-tuples are produced by linear functionals on a subspace  h  of g:

These linear functionals are the    weights   of  j.

So we associate to each simple Lie algebra  g  an  n-dimensional vector space  h*  that contains the weights of
representations of  g;  it is called the    weight space   of  g.

$  The Weyl group  W  for  g  acts on  h*.

A3:  Numbers Game

A3.1   $  The Numbers Game will be my main tool for these talks.

The Numbers Game is played on a fixed connected simple graph  Γn,
given an initial state  λ  that is a labeling of its nodes with integers:

For example,  here is a labeled simple graph  Γn  that has  7  nodes.

$  For one move,
you can choose any node that has a positive label, say the Red +4 here, and "fire" it —
add that label to the labels of the adjacent nodes and then negate that label.

So here the four labels that are adjacent to the Red +4 label have been increased by 4,  and
the Red +4 has been replaced by this Red –4.

(Or I could have fired one of these other two nodes, with the Green +2 or the Blue +1.)

But first,  let me note that at this new state I have four positive nodes to choose from for the next firing:

$  If I fire at this Green +2 down here,  I will produce the same state as if    
$  I had first fired at this Green +2 up here and then secondly fired at the Red +4.



A4:  Overview:  5 Realms, Goals, Cases/Flavors

A4.1   $  In these talks I will be working in 5 different realms:

In Realm-I,  I will be concerned with the Numbers Game on a fixed graph  Γn.

$  In Realm-II,
I will study orbits in  h*  of the Weyl group  W  for the Dynkin diagram  Γn.

$  In Realm-III,  I will study four classses of special colored posets whose  Γn-colorings obey certain axioms:  These
are the "minuscule" and "d-complete" Γn-colored posets;
each of these kinds of poset can be finite or infinite.

$  In Realm-IV,  I will study representations of the Lie algebra  g  for the Dynkin diagram  Γn  that are "built" from
Γn-colored posets;
these algebras can be simple Lie algebras or Kac-Moody algebras.

$  In Realm-V,  I will study representations of the Lie algebra  g  for the Dynkin diagram  Γn  whose weights have
certain "nice" properties.

A4.2   $  My goals in  these talks are:

First,  within each of the 5 realms,  classify the possible structures using Dynkin diagrams.

$  Second,  to present the work of Green & Strayer on building Kac-Moody reps;
for this they used the doubly-infinite minuscule posets introduced by Green.

$  Also,  I'll introduce a notion of "infinite  d-complete" poset.

$  And along the way,  I'll review the construction of  d-complete posets from the  λ-minuscule elements of Kac-
Moody Weyl groups.



A5:  Cases/Flavors of Structures

A5.1   $  Now I'll preview the flavors of the structures that I'll be considering.

We'll always have one fixed connected simple graph  Γn  at hand,
and I'll often view its nodes as being colors.

$  Early in the talk,  if I am talking about Lie algebras,
then  Γn  will be one of the Dynkin diagrams of Types ADE.

Later in the talk,  if I am talking about Lie algebras,  then  Γn  will be a general simple graph.

Correspondingly,  the Lie algebra at hand will be simple (finite dim'l) or Kac-Moody (infinite dim'l).

$  I will consider only "simply-laced" simple Lie algebras and Kac-Moody algebras.

The directed graphs produced by the Numbers Game can be finite or infinite.

A5.2   $  My special  Γn-colored posets will fall into 4 classes:
minuscule or d-complete, finite or infinite.

I'll explain this table later today.

$  The minuscule posets will have some nice properties holding in both the "up" and the "down" directions,  while the
more general  d-complete posets will have these nice properties holding only in the "up" direction.

$  Correspondingly,  the representations considered will be for all of  g  or for just its "Borel" subalgebra  b+.

A5.3   $  Most of the posets  P  that I'll consider will appear in two versions …
the original poset  P  itself,  but also sometimes its associated lattice  L  of order ideals.

$  Each manifestation determines the other manifestation.

$  Sometimes the larger  L-version will appear first;
sometimes the smaller  P-version will appear first.

I'll go through the mechanics of the relationship later.

Okay,  that completes my introduction …



Part B:  Numbers Game Describes Orbits of Weyl Groups

Now we're ready to get to work!

In this part I'll want to indicate how the Numbers Game can be used to describe the orbits of Weyl groups.

$  For Part B,  let's fix one Dynkin diagram  Γn  of Type ADE and
consider the simple Lie algebra  g  determined by  Γn.

B1:  Representations of Lie Algebras and Their Weights

B1.1   $  In the simple Lie algebra  g  we fix a nice abelian subalgebra  h.

It's called the    Cartan subalgebra  ;  its dimension  n  is the   rank   of  g.

$  For example,  in the Lie algebra  sln,  we take  h  to be the subspace of diagonal matrices.

In general,  the rank of  g  is the number of nodes in the Dynkin diagram  Γn  for the algebra.

B1.2   $  We're now ready to study a representation  ϕ  of the Lie algebra  g.

To do this,  we generalize the notion of "eigenspace" from one linear operator on  V  to the images of the elements of
the subalgebra  h  on  V:

$  Let  h*  denote the dual vector space to the CSA  h.

A nonzero subspace  U ⊆ V  is a    weight space    for  ϕ  if there is a linear functional  ν  on  h  such that the functional  ν
produces an eigenvalue for the action of any element from  h  on any vector  u  in the subspace  U.

Here  ν ∈ h*  is called the    weight   for the weight subspace  U.

$  So "weight" and "weight space" generalize "eigen-value" and "eigen-space".

Hence the dual space  h*  of  the Cartan subalgebra  h  is called the   space of weights   for  g.



B1.3   $  For the representation  ϕ,  let's collect the weights  ν  for its weight spaces
into a set  ∏(ϕ);  this is the    weight diagram    of  ϕ.

We will consider only    weight   representations;
for these the vector space  V  can be expressed as the sum of the weight spaces  U  for  ϕ.

$  There's a nice basis for the space  h*  of weights:

It consists of the   fundamental weights    ω1, …, ωn,
which are indexed by the nodes of the Dynkin diagram.

A weight  λ  in  h*  is   dominant integral   if it is a nonnegative sum of the fundamental wts.

$  A dominant integral weight  λ  can be described by labeling the Dynkin diagram  Γn:

Just write the coefficients of  λ  with respect to the fundamental weights next to the corresponding nodes of the
diagram:

B1.4   $  The irreducible finite dimensional representations of a simple Lie algebra  g  have been classified:

Each such representation  ϕ  of  g  has a   highest weight    λ;  this weight is dominant integral.

Up to equivalence,  there is one such representation  ϕ  for each dominant integral weight  λ.

Hence the irreducible finite dimensional representations  ϕ  of a simple Lie algebra  g  are specified by the nonnegative
integer labelings  λ  of its Dynkin diagram  Γn.

$  Arbitrary integral linear combinations of the fundamental weights are also important;
these are the   integral   weights:



B2:  Simple Roots, Weyl Group Actions

B2.1   $  For the weight space  h*  there is another important basis  α1, …, αn  of   simple roots  ;  these are again
indexed by colors  i  from  Γn.

$  The space  h*  has a nondegenerate bilinear form defined  〈.,.〉  on it.

For each simple root  αi,  there is a   simple reflection    si  of the weight space  h*:
For  µ ∈ h*,  set  si.µ := µ – 〈µ,αi〉αi .

Here the multiple of the simple root  αi  to be subtracted from  µ  is determined by a bilinear form calculation.

$  The     Weyl group    W  of  g  is the subgroup of  GL(h*)  generated by these  n  simple reflections.

For the simple Lie algebras,  the Weyl groups are finite.

B2.2   $  Let's return to considering one representation  ϕ  of our simple Lie algebra  g.

The set  ∏(ϕ)  of weights for  ϕ  is stable under the action of  W.

$  Let  λ  be the highest weight for  ϕ.

Since  λ  is in  ∏(ϕ),  we can start to find some of the other weights in  ∏(ϕ)  by repeatedly acting on it with all
applications of the  si.

$  This was the origin of the Numbers Game (in my 1980 thesis).



B3:  Computing Weyl Group Orbits
 B3.1   $  I'm now ready to describe Realm-II,  which concerns orbits of the Weyl group  W:

A  W-orbit of a weight  λ  in   h*  can be computed using both the fundamental weight basis and the simple root basis,
and by applying two nice facts to the reflection formula:
First,  we have  〈λj,αi〉 = δij,  the Kronecker delta.
Second,  the change-of-basis rule from the simple roots to the fundamental weights is nice:
When the Dynkin diagram  Γn  is simply-laced,  the rule for the  ith simple root is  αi = 2ωi – ∑ωj,
where the sum runs over the nodes  j  of  Γn  that are adjacent to the node  i.

$  Using (1) and (2) in the reflection formula,  we see that result of reflecting the fundamental weight  ωj  by the
simple root αi  is given by the formula  si.ωj = ωj – (2ωj – ∑ωk) = –ωj + ∑ωk,
where the sum runs over all of the nodes  k  of  Γn  that are adjacent to the node  j.

B3.2   $  Let's show how this reflection formula works for the Weyl group  E6:
Here the Node '3' has three adjacent nodes:  2, 4, and 6.
So if we reflect the fundamental weight  ω3  by the simple reflection for  α3  we get the following result:

$  Any integral weight can be displayed with a labeled Dynkin diagrams.
Here are the labeled Dynkin diagrams for the fundamental weight  ω3  and
for the weight we just produced by applying the reflection  s3  to  ω3:

$  For another example,  for the Weyl group  A4,
suppose we start out with the dominant weight  λ  which is just the fundamental weight  ω1.

Here is the result of applying  s1  to  ω1:

The reflection actions of  W  on  h*  are linear.

$  Please allow me to write a '+1' as a '+' sign and a '–1' as a '–' sign.
Then these labeled diagrams show the result of reflecting  λ  first with respect to  α1,
then with respect to  α2,  then  α3,  and then finally with respect to  α4:

$  This sequence of results can be viewed as a wave traveling down a straight channel:



B3.3   $  Let's give a more general example that uses the fact that the reflection actions of  W  on  h*  are linear.

Depict a dominant integral weight  λ  with a labeled Dynkin diagram,  for example  D6:

Suppose we act on  λ  by the reflection corresponding to a simple root  αi,  say  α4.

$  The labels for  λ  at the nodes that are not adjacent to Node  i  are unaffected by the action.

The label at  i  is negated by linearity,  and that label is added to the labels of the adjacent labels,  again by linearity.

$  This is one move in the Numbers Game on  Γn!

Iterate these actions in all possible ways.  Since  W  is finite,  the Numbers Game generates all of the orbit  W.λ.

B4:  Minuscule Representations

B4.1   $  Continue to consider the simple Lie algebra  g  and the Weyl group  W  that are specified by our fixed
Dynkin diagram  Γn,  and also
consider a representation  ϕ  of  g  whose highest weight is the dominant integral weight  λ.

The set of weights of  ϕ  is now denoted by  ∏(λ).

It's almost always true that the orbit of the highest weight is not the entire set of weights for a representation:  Usually
this orbit is a strict subset of the set  ∏(λ)  of all weights.

$  A    minuscule   representation of  g  is one for which the two sets are  equal.

The minuscule representations have been classified;  their highest weights  λ  are always fundamental weights.

$  Here are the labeled Dynkin diagrams for the highest weights of the minuscule representations:

B4.2   $  Let's look at the orbit of one of these minuscule highest weights:

For the Weyl group A5,  let's start with its fundamental weight  ω3:

This directed graph describes the Numbers Game generat'n of the Weyl group orbit of  ω3.

$  Since  ω3  is the highest weight for a minuscule representation,
these weights form theentire  set of weights  ∏(λ)  for the representation  ϕ.



B4.3   $  There is a standard partial ordering of the space  h*  of weights:

One defines  µ ≤ ν  if  ν – µ  is a nonnegative sum of simple roots.

$  When this Weyl group orbit was just computed,
each Numbers Game move subtracted one simple root.

Therefore that directed graph was the Hasse diagram for that orbit set of weights
when they were ordered by the standard partial ordering by roots.

B5:  Bruhat Orders, Bruhat Lattices

B5.1   $  To explain how minuscule and  d-complete posets first arose,
I'll need to briefly talk about Bruhat orders.

Let's choose a subset  J  of the nodes in the diagram  Γn  that specifies the Weyl group  W.

Then use the simple reflections  sj  for the nodes  j  in  J
to generate a Weyl subgroup  WJ  of  W.

The    Bruhat ordering   is a partial ordering of the elements of a Weyl group  W.

It can also be used to partially order the cosets  in  W/WJ  of the subgroup  WJ.

The set of these cosets is denoted  WJ.

$  Given the subset  J,
there is a dominant integral weight  λJ  such that the orbit  W.λJ  describes  WJ.

The Bruhat ordering rule can be translated into this  h*  setting.

$  The minuscule representations' highest weights  λ  are fundamental weights,
which are of the form  λJ  for some  (n–1)-element subsets  J  of the nodes in  Γn.

In these cases the standard "by roots" ordering of the orbit  WJ.λ  by simple roots
is essentially the Bruhat poset  WJ.   (Actually,  it's the order dual of it.)



B5.2   $  Among the  WJ  Bruhat orders for the simply-laced groups  W:  The only distributive lattices are the Bruhat
orders that come from the minuscule representations.

$  So this list of labeled Dynkin diagrams also indexes the "Bruhat lattices":

This was the main result of my MSJ plenary talk,
and we've now finished Part B.

Part C:  Finite Colored Minuscule Posets

In this part I'll present my first class of  Γn-colored posets,  the finite colored minuscule posets.

C1:  Distributive Lattices, Lattices of Ideals

C1.1   $  First I need to present two more sets of posets definitions:

To start the first collection:

A poset  L  is a   distributive lattice   if for any two elements there exists a greatest lower bound and a least upper bound
such that the distributive laws are satisfied.

$  The Hasse diagram for a distributive lattice looks like a bunch of  d-cubes glued together.

This implies that the covering edges in a distributive lattice can be partitioned into sets of "parallel" edges.

$  An element of a lattice  L  is defined to be a   one-cover   if it covers exactly one other element.

I'll denote the subposet of one-covers of  L  by  OC(L).

$  Here's a Bruhat distributive lattice  WJ  for the Weyl group  A4 …
I've circled the subset  J  of nodes in red,  and the highest weight is this  λJ:

It has ten elements.

In this distributive lattice I've circled the one-cover elements:



C1.2   $  To start the second collection of poset definitions:

In any poset  P,  an ideal is a subset that is "downwardly closed":
A subset  I  of  P  is an   ideal   if whenever an element  y  is in  I,
then  x  being less than or equal to  y  implies that  x  is in  I.

I'll denote the set of all ideals of  P  by  I(P);
these can be ordered by containment.

$  For an example,  in this red six element poset I've circled the elements of two ideals,
one in blue and one in green.

$  This poset has ten ideals altogether;
when they are ordered by containment the following distributive lattice results:

Notice that this is just the ten element Bruhat lattice  L = WJ  that we started with!

C2:  FTFDL, Minuscule Posets

C2.1   $  The Fundamental Theorem of Finite Distributive Lattices says that this happens in general — any
distributive lattice  L  can be "distilled" down into its poset  OC(L)  of one-covers,  from which  L  can be recovered
by applying the poset-of-ideals construction.

$  Here's a summary of our example:

$  This theorem explains the Confusion that I warned you about in my introduction:

I will often be interested in both the "L" and the "P" manifestations of a poset.

At times the "L" version of a poset will arise first:
Numbers Game graphs, Bruhat distributive lattices,  and
at times "P" version of a poset will arise first:
minuscule & d-complete posets.



C2.2   $  The original Definition of "minuscule" poset was:

The    minuscule   posets are the posets that arise as posets  OC(L)  of one-covers of the Bruhat distributive lattices  WJ  for
the finite Weyl groups  W.

Here they are:

$  These posets have been used to compute the cohomology of minuscule flag manifolds.

C3:  Coloring Edges:  DL's, Numbers Game, Coloring Minuscule Posets

C3.1   $  For a moment,  consider any fixed connected simple graph  Γn.

Let's regard its nodes as being colors:

Let  P  be a  Γn-colored poset;
recall that this means that the elements of  P  are colored with the  n  nodes of  Γn:

Let's return to the construction of the lattice  I(P)  of ideals of  P.

$  The places where a given element is "augmenting" ideals form a set of parallel edges in the Hasse diagram for  I(P).

$  So the col'ng of  P  by  Γn  induces a coloring by  Γn  of the sets of parallel edges in  I(P).

Conversely,  each coloring of the sets of parallel edges in a distributive lattice  L  induces a coloring of the elements of
the poset  OC(L).

C3.2   $  Now let's consider a Numbers Game played on a Dynkin diagram  Γn.

Let's regard the distinct nodes of  Γn  as being distinct colors.

Then in the directed graph that describes playing the game, the edges can be colored accord'g to which node is fired.

$  Let's return to the example for  A5,  and suppose that this fourth node is pink:

Whenever that node is fired,  I have colored that downward edge with pink:

$  In fact,  when this is done in any of the Numbers Game directed graphs that generated the Bruhat lattices  WJ,  all of
the edges in a parallel set of edges will receive the same "firing" color.

This  Γn-coloring of the edges induces a  Γn-coloring of the elements of the corresponding minuscule poset.



C3.3   $  I define the resulting colored posets to be the    minuscule   Γn-colored posets;
here they are:

C4:  Properties of Finite Colored Minuscule Posets, Realm-III

C4.1   $  These colorings of the minuscule posets have several nice properties.

But first I need to give some more poset definitions:

Let  x  and  y  be any two elements of a poset  P.

If  x ≤ y,  then we say that  x  and  y  are   comparable  .

Two elements are   neighbors   if one of them covers the other one.

Given  x,y ∈ P,  the   closed interval   from  x  to  y  is the set of all elements of  P  that are "weakly" between  x  and  y.

$  A poset is a   chain   if any two elements in it are comparable.

And for  k ≥ 3  a   double-tailed diamond   poset (DTD) is a poset of this form:

C4.2   $  Three of the nice properties that a  Γn-colored minuscule poset  P  has are:

(EC)   If two elements of  P  have Equal colors,  then they are Comparable.

For example,  here all of the Green elements are comparable.

$  (NA)   The colors of two Neighboring elements in  P  must be Adjacent in the Dynkin diagram  Γn  for  P.

For example,  the neighbors of the Pink elements in this poset are only of the colors green, brown, and light blue.

$  (DTD)   If  x  and  y  are consecutive occurrences of a given color,  then the interval  [x,y]  is a Double-Tailed-
Diamond.

For example,  the intervals between the first and second blue elements and between the second and third blue elements
are both Double-Tailed-Diamonds.



C4.3   $  As I continue to work in Realm-III,  I will be concerned with four special kinds of  Γn-colored posets:
posets that have the "full strength" minuscule properties or that merely have the weaker "d-complete" properties.

These posets may be finite or infinite.  So far today I have presented the finite minuscule  Γn-colored posets.

I introduced the minuscule posets and  d-complete posets in 1984 and 1999, and Green introduced the infinite
minuscule posets in 2007.

$  A student of mine who is graduating this year, Michael Strayer, has produced some nice uniform definitions that
encompass all four classes of these  Γn-colored posets.

These definitions impose coloring requirements such as the three properties EC, NA, and DTD.

That's it for Part C;  we're now ready to

Part D:  K-M Weyl Groups,  λ-Minuscule w's, d-Complete P's

work more generally in the context of Kac-Moody Weyl groups.

D1:  Kac-Moody Weyl groups

D1.1   $ To produce the finite min'le posets,  it was good enough to work with the finite Weyl groups of Types ADE.

But to produce the other three classes of  Γn-colored posets that I am interested in,
it is necessary to work with the messier Kac-Moody algebras and their infinite Weyl groups.

This is true even for the finite  d-complete posets.

So for the rest of these talks:

From now on let's fix any connected simple graph  Γn  that has  n  nodes.

Every such graph  Γn  specifies a simply-laced K-M Weyl group  W.

The group  W  is infinite when  Γn  is not of Type ADE.

I'll associate two vector spaces to the group  W:
the space  h*  of weights and an  n-dimensional quotient vector space  h*´  of  h*.

As before,  I'll associate vectors  ω1,…,ωn  and  α1,…,αn  to the nodes of  Γn.

The  ωi  form a basis of  h*´.



$  The  α1,…,αn  no longer give a basis of all of the vector space  h*,  and
now the bilinear form  〈.,.〉  on  h*  might be degenerate!

I'll denote their images in  h*´  by  α1´, …, αn´

As before,  we will be concerned with the integral linear combinations of the  ωi.

Again I will call these   integral weights  ;  they are depicted with the integral labelings of  Γn.

D1.2   $  We still have the ingredients needed to use the Numbers Game to model the action of the Weyl group   W,
provided that we now work in  h´*.

Let  µ  be an integral weight in  h´*.   Set  si.µ := µ – 〈αi,µ〉αi´,

$  Still have the nice two facts:

(1)   〈αi,λj〉 = δij.   (So this evaluation 〈αi,µ〉  is the label of the weight  µ  at node  i  in  Γn.)

(2)   Change-of-basis:  αi´ = 2ωi – ∑ωj,
where the sum runs over the nodes  j  of  Γn  that are adjacent to the node  i.

$  But in the Kac-Moody case the Numbers Game modeling of the action of  W  is not faithful;  we have to now work
harder.

D2:  λ-minuscule elements

D2.1   $  Let  λ ∈ h*´  be an integral weight.

Dale Peterson defined an element  w  of a Kac-Moody Weyl group  W  to be     λ     -minuscule   if it can be expressed as  w
= sik…si1  for some  k ≥ 0  and some  i1, …, ik ∈ Γn  such that
〈sij–1

…si1.λ,αij〉 = +1  for  1 ≤ j ≤ k.

$  This means that the simple root  αij  itself is being subtracted at the  jth stage;
not some multiple of it.

It can be shown that  sik…si1  is a reduced decomposition,  and
that any other reduced decomposition for  w  satisfies this definition.



D2.2   $  We can restrict the Numbers Game to find the  λ-minuscule elements of  W:

Starting with the labeling  λ  of  Γn,  we can now fire a node only if it is labeled with a +1.

$  We can repeat this to increase the "length" of the  w  that we are creating,  for as long as there is at least one +1
label present on  Γn.

Each such firing sequence of +1's will create a  λ-minuscule element  w  of  W.

D2.3   $  To illustrate this definition,  let's look at part of playing the Numbers Game for the Weyl group  E6  with
this initial labeling  λ:

$  Now if the nodes in the Dynkin diagram are numbered in this way,
I'll label the firing edges with the numbers of the diagram nodes.

Since all of the firings here are +1's, at each stage one simple root was being subtracted,  and
so we read down any firing sequence from the initial state  λ and write down the simple root reflections from right to
left,  then we will have created a reduced decomposition for the  λ-minuscule element  w.

$  These red arrows indicate one particular firing sequence,  which leads
to this particular reduced decompositon for one  λ-minuscule Weyl group element  w:

D2.4   $  For some Kac-Moody Weyl groups,  this picture is not as easy:

Suppose we choose this weight for the affine  E~6  to be the initial state for a Numbers Game:

If we apply the following sequence of  λ-minuscule firings  (this is just part of the Numbers Game's directed graph),
then we end up back at our initial state  λ!

But we can still use this graph to create  λ-minuscule elements of  W.

$  This first sequence describes a reduced decomposition of one  λ-minuscule Weyl group element  w1,  and if we
repeat this sequence of firings,  then we obtain a reduced decomposition for a second   λ-minuscule element  w2.

But ideally:  It would be nice for the states in the Numbers Game directed graph to correspond bijectively to the  λ-
minuscule elements  w.



D3:  Augmented Numbers Game

D3.1   $  To obtain a faithful depiction of a Weyl group orbit,
I augment the labelings of  Γn  with "tallies".

In the    Augmented Numbers Game   on  Γn  the states are now ordered pairs:
The first component is a labeling of  Γn  and the second component is the   tally  n-tuple  .

$  The tally  n-tuple for the initial state is defined to be  0.

For the later states,
the tally  n-tuple records how many times each color has been fired so far.

$  Now the cycling phenomenon can't occur.

D3.2   $  Let's return to our  E~6  example,  but now let's add in the tally  n-tuples:

These two states are now distinct.

Within combinatorics it can be seen that this directed graph is acylic.

As far as depicting elements of the Weyl group is concerned:

Using the linear independence of the  αi  in  h*,  it can be shown that distinct  λ-minuscule elements  w  will create
distinct augmented states.

So we can use the Augmented #'s Game to faithfully construct as much of the Weyl group orbit at  λ  as we want.

D4:   Wave Theorem,  d-Complete Posets

D4.1   $  Let's return to considering the Bruhat ordering on the Weyl group  W  for  Γn.

The identity element  e  of  W  is the unique minimal element in this ordering.

Each element  w  of the group  W  specifies a "principal" ideal  [e,w]  of this Bruhat poset.

$  Now fix an integral weight  λ  and one  λ-minuscule element  w.

Let's define the Poset of Tallies for  w  to consist of all of the tallies that can be produced "on the way" from  λ  to
w.λ,  ordered by componentwise comparison.



D4.2   $  Here's the main result of a 1999 paper of mine;  it generalizes the creation of the minuscule posets from the
Bruhat lattices for the finite Weyl groups:

 Let  λ  be a dominant integral weight.   Let  w  be a  λ-minuscule element of  W.

(1)  The poset of tallies assigned to  w  is isomorphic to the ideal  [e,w]  in the Bruhat order.

(2)  This poset is a distributive lattice.

$  (3)  The poset of one-covers in  [e,w]  is a  Γn-colored poset that has a set of "d-complete" coloring properties.

(4)  Every  Γn-colored poset with the  d-complete properties arises in this fashion.

$  A  d-complete  Γn-colored poset was defined to be a  Γn-colored poset that has these coloring properties.

D4.3   $  The original "d-complete" properties included
the nice properties EC, AC, and DTD noted earlier for the minuscule posets.

$  So I've now indicated how both the finite minuscule and the finite  d-complete posets arose from Bruhat orders on
Weyl groups.

We're now ready to begin to discuss

Part E:  Infinite Minuscule & d-Complete Posets, Classifications

Infinite minuscule & d-complete posets and their classifications.

E1:  Extended Numbers Game

E1.1   $  Now I want to indicate how infinite minuscule and  d-complete posets will hopefully arise from the
Numbers Game;  this is work-in-progress.

As before,  let's fix some connected simple graph  Γn  and a labeling   λ  of it.

I'll now refer to  λ  as our "reference" state (and not as our "initial" state);
its tally  n-tuple is still  (0, 0, …, 0).

There is another way in which I'll extend the original Numbers Game.



$  In addition to augmenting the states to produce an acyclic directed graph,

I'll now also allow "anti-firing" moves:

At any node with a negative label in any state,  one can "anti-fire" that node by reversing the usual firing action:

Add that label to the labels of the adjacent nodes and then reverse the sign of that label.

Diminish the component for that node in tally  n-tuple by adding that negative label to it.

The resulting state may or may not be present in the directed graph constructed so far.

If it isn't present,  then adjoin this new state to the directed graph.

Draw the arrow in the directed graph in the opposite direction.

$  Here I illustrate this on the initial (now reference) state for our  E~6  example:

I'll anti-fire the '–1' to produce this new state;  this diminishes that component of the tally:

E1.2   $  Here's a portion of our  E~6  example near the same reference state λ:

The directed graph for this Extended Augmented Numbers Game is doubly infinite …
it goes on forever in both the down and the up directions.

As before,  the (undisplayed) tally  n-tuples make the states with the same labels distinct.

E1.3   $  Is this infinite directed graph the Hasse diagram for an infinite distributive lattice?

If it is,  now that we're working with an infinite lattice  L,
can it still somehow be produced by the  I(.)  functor from its subposet  OC(L)?

$  There are other examples of game graphs that look similar to this … all of their labels come from  {+1,0,–1}.

$  If they are distributive lattices  L,  can we characterize their posets  OC(L)  of one-covers as being  Γn-colored
posets that satisfy certain properties?

Since these Numbers Games' directed graphs are so similar to those for the minuscule lattices,  doing this could lead to
a notion of "infinite minuscule"  Γn-colored poset.

However,  Green was led to a notion of "infinite minuscule"  Γn-colored poset from another direction,  which I'll soon
describe.



E2:  Strayer's Uniform Definition of Finite and Infinite Minuscule Posets

E2.1   $  In a 2001 paper,  John Stembridge extended my theorem for  λ-minuscule Bruhat lattices and  d-complete
posets to Kac-Moody Weyl groups that are not simply-laced.

When doing so, he developed a some nicer axioms to define finite  d-complete posets.

In a 2007 paper,  Richard Green used some of Stembridge's axioms when he formulated a notion of infinite minuscule
poset.

But to define finite minuscule posets,  he had to give a separate definition.

$  Let's return to the  2 × 2  table that summarizes the history for the  Γn-colored posets we are considering.

$  Recently my student Michael Strayer improved upon Green's definition of infinite minuscule posets so that he could
define finite minuscule posets at the same time.

$  So now the definition of minuscule poset can be made uniformly for finite and infinite posets at the same time.

E2.2   $  Before presenting Strayer's definition,
we need to introduce a common assumption in combinatorics:

A poset is   locally finite   if every interval  [x,y]  in it is finite.

Here's Strayer's definition:

A locally finite  Γn-colored poset  P  is     minuscule  
if its coloring is such that the following six  Γn-coloring properties hold:

E2.3   $  Earlier,  I introduced these first two properties for finite minuscule posets:

(EC)  any two elements in  P  with the same color are comparable,  and

(NA)  any two neighboring elements in  P  have distinct colors that are adjacent in  Γn.



$  Stembridge and Green introduced the next two properties;  the second of these is closely related to the DTD interval
property I introduced before:

(AC)  any two elements in  P  whose colors are adjacent in  Γn  are comparable,  and

(I2A)  strictly between any two consecutive occurences of a given color in  P,  there exist exactly two elements whose
colors are adjacent to that color in  Γn.

$  Strayer developed the last two properties:

(Mx1GA)  the number of elements above a maximal element of a given color whose colors are adjacent to that color in
Γn  cannot exceed 1.

(Mn1LA)  the number of elements below a minimal element of a given color whose colors are adjacent to that color in
Γn  cannot exceed 1.

E2.4   $  Here are two examples of infinite minuscule  Γn-colored posets (but without the colors):

If we form the lattice of ideals for the second one,  then we we'll produce the directed graph for the  E~6  example of
the Extended Numbers Game above.

E3:  Strayer's Uniform Definition of Finite and Infinite  d-Complete Posets

E3.1   $  In 2015,  when revisiting  d-complete posets with my student Scoppetta,
it seemed that there should also be a notion of "d-complete" for locally finite posets.

But I was not able to come up with a "good" definition of this concept.

$  Strayer's definition of "Γn-colored minuscule" is easily modified to become a good definition of "Γn-colored  d-
complete" posets:

One simply drops the requirement of Axiom MN1LA:

A locally finite  Γn-colored poset  P  is    d-complete   if its coloring is such that
Axioms EC, NA, AC, I2A, Mx1GA are satisfied.

So this definition also does not refer to the cardinality of  P;
it is the first definition of  d-complete poset that "works" for infinite posets.

What are some examples of infinite  d-complete  Γn-colored posets?



$  First we need another poset definition:

A subset  F  of a poset  P  is a   filter   if it is "upwardly closed",  namely:
For every  y ∈ F,  if  x ≥ y  then  x ∈ F.

It is easy to see that any filter (possibly the entire poset) of a minuscule poset is a  d-complete poset.

E3.2   $  So for examples of infinite  d-complete posets,
we can take any filters of the two infinite minuscule posets that I just displayed

$  Here are those filters as posets in their own right:

E4:  Classifications of Finite Minuscule &  d-Complete Posets

E4.1   $  Let's check back in with the my "big view" of these talks:

Now that I've presented the definitions for all four kinds of my posets,
I have introduced all of the structures considered in Realms I, II, and III.

It's not hard to see that Realms I and II are equivalent.

Also,  I've indicated how the finite minuscule and finite  d-complete posets arise from orbits of the Weyl group.

$  I now want to talk about the four problems of listing all of the possible structures in each of the five realms.

E4.2   $  It's known that the only possible finite minuscule  Γn-colored posets are the five kinds that I displayed
earlier:

$  So at this point it's natural to seek to list all of the other three kinds of posets:

E4.3   $  Building upon the 2007-2014(?) work of Green and his student McGregor-Dorsey,  and upon my own work
of 1984 and 1999,  Strayer and I can now list all possible  Γn-colored posets in each of the four classes:  minuscule and
d-complete,  finite and infinite.



E4.4   In 1999 I classified the finite  d-complete posets.

$  These  Γn-colored posets were produced by playing the Augmented Numbers Game starting from the following
initial labelings  λ  on the following graphs:

Although these posets are finite,  most of these graphs correspond to infinite Kac-Moody Weyl groups,  not to finite
Weyl groups.

$  The "slant irreducible components" of the finite  d-complete  Γn-colored posets fall into 15 classes.

Here from one initial labeling  λ  the Augmented Numbers Game can often be played in "different directions".

But in for every sequence of choices,  there is a maximal possible finite game graph.

The following displayed posets are the corresponding maximal possibilities —

E4.5&6&7   $  Here are the one-cover posets for the maximal  λ-minuscule Bruhat lattices that are generated from
these labeled Y-shaped graphs  Γn:

E5:  Classifications of Infinite Minuscule &  d-Complete Posets

E5.1   $  McG-D finished Green's classification of the infinite minuscule posets in 2013.

$  All of their possibilities came from some of the affine Kac-Moody Weyl groups;
here are the Dynkin diagrams for those groups:

McGregor-Dorsey developed a system to index the possibilities.

I won't present his indexing system here.

E5.2   $  Instead,  I'll propose listing the possible infinite minuscule  Γn-colored posets as follows:  I conjecture that
the following labeled simply-laced affine Dynkin diagrams list possible reference labelings from which one can use the
Extended Augmented Numbers Game to generate all of the distributive lattices for the infinite minuscule  Γn-colored
posets.

E5.3   $  Finally,  Strayer and I have shown that if a  Γn-colored poset is  d-complete,
then it must be a filter of one of the infinite minuscule posets.

$  So all four of our kinds of special  Γn-colored posets have now been classified,
which completes Part E.



Part F:  Building Representations from Colored Posets

In this part I want to describe the original motivations for considering infinite minuscule and  d-complete posets.

F1:  Splits

F1.1   $  For the time being,  I am done with Realms I, II, and III … so we'll have a fresh start in Realm IV for Part
F!

Building representations from colored posets is the topic that provided the motivation to Green and Strayer for
considering   infinite   minuscule and  d-complete posets.

$  First,  I need some more poset definitions —
I want to develop a new way of viewing the ideals of  P.

Observe that if  I ⊆ P  is an ideal,  then the set  P – I  is a filter of  P.
And if  F ⊆ P  is a filter,  then the set  P – F  is an ideal of  P.

So the filters and the ideals of  P  occur in complementary pairs  (F,I).

$  Considering such a pair  (F,I)  is equivalent to splitting the Hasse diagram of  P  into two parts.

So let's define a   split   of P to be a filter-order pair  (F,I)  such that  F  and  I  partition  P.

F1.2   $  Let's denote the set of all splits of  P  by  FI(P).

When it is ordered by the inclusion of the ideals in the splits,
it is just the distributive lattice  I(P)   that was considered before.

$  Let's return to the lattice of ideals of that six element poset.

Let's look at one split  (F,I).

$  If  z  is a minimal element of  F,  then  (F–{z},I∪{z})  is a split.

So "transfering" a minimal element of  F  to the ideal  I  forms another split.



F2:  Raising & Lowering Operators

F2.0   $  Fix a graph  Γn  of colors and a  Γn-colored poset  P.

Let  V(P)  be the free complex vector space on the set of splits of  P.

The basis vector corresponding to  (F,I)  is denoted  〈F,I〉.

$  Choose one color  i  from  Γn.

Define a "raising" linear operator  Xb  on  V(P)  by taking the result of it acting on a split  〈F,I〉  to be the sum of all
splits  〈F´,I´〉  such that there exists some element minimal element  z  of  F  of color  i  such that  F´ = F–{z}  and  I´ =
I ∪{z}.

Dually-analogously define a "lowering" linear operator  Yi  on  V(P);  it sums over all of the ways of transferring
maximal elements in  I  of color  i  to the complementary filter  F.

$  Continuing with our example,  let's suppose that this element 'e' of the poset has color '4'.

Then applying  X4  to this split will describe the result of transfering that element of color '4' from this filter  F  to this
filter  I:

$  Finally,  on  V(P)  set  Hi := XiYi – YiXi.

F3:  Internal Structures of Simple Lie Algebras
F3.1   $  Every simple Lie algebra  g  has a structure that is similar to that of  s ln+1.

$  The Dynkin diagram  An  of  s ln+1  has  n  nodes:

To each node  i ∈ An  we associate two matrices  xi := Ei,i+1  and  yi := Ei+1,i  in  sln+1.

Using the commutator bracket  [.,.],  this Lie algebra is generated from these  2n  elements.

And these  2n  elements satisfy certain relations in bracket.

Let  V  be a vector space.

$  If we can define  2n  linear operators  Xi  and  Yi  for  i ∈ An  which satisfy the analogous relations in the
commutator bracket for  V,  then sending  xi |→ Xi  and  yi |→ Yi  will specify a representation of  sln+1  on  V.



F3.2   $  Let's continue our example.

Let's color the six elements of our poset with the four colors from this Dynkin diagram,
which is the Dynkin diagram for  sl4+1.

Let's construct the four raising operators  X1, X2, X3, X4  and
the lowering operators  Y1, Y2, Y3, Y4.

$  It can be seen that these eight linear operators on the vector space generated by the ten splits here satisfy all of the
relations satisfied by the generators  x1, x2, x3, x4  and  y1, y2, y3, y4  for the Lie algebra  sl4+1.

Therefore these eight operators generate a representation of the algebra  sl4+1  on this ten-dimensional vector space.

$  The brackets  [xi,yi]  produce important elements;  these are equal to  Ei,i – Ei+1,i+1,  and these elements are given the
names  hi  for  i ∈ An.

F4:  Simply-Laced Reduced Kac-Moody  g´  for  Γn

F4.1   $  Now let's return to our fixed general connected simple graph  Γn  with  n  nodes.

For each color  i ∈ Γn,  create two symbols  xi  and  yi.

Use these  2n  symbols to generate a free Lie algebra over  C.

For each color  i  in  Γn,  set  hi := [xi,yi].

$  The   simply-laced reduced Kac-Moody algebra    g´  specified by  Γn  is the Lie algebra produced by imposing the
following relations on this free Lie algebra:

F4.2   These new Lie algebras  g´  include the simply-laced simple Lie algebras,
but they are infinite dimensional whenever  Γn  is not  An, Dn, or E6, E7, E8.

$  As for  s ln+1,  if on some vector space  V  we can define 2n  linear operators  Xi and  Yi
for  i ∈ Γn  which satisfy the analogous relations in the commutator bracket for  End(V),  then sending  xi |→ Xi  and
yi |→ Yi  will specify a representation of  g´  on  V.



F5:  Theorems of Green and of Strayer

F5.1   $  Now let's also fix a  Γn-colored poset  P.

Construct its lattice  FI(P)  of splits and the free vector space  V(P)  on  FI(P).

Construct the raising and lowering operators  Xi  and  Yi  on  FI(P).

$  We want these  2n  operators to generate a representation  ϕ  of the reduced Kac-Moody algebra  g´  for  Γn.

When this happens,  we say that  ϕ  has been   built   from  P.

$  Green used his doubly infinite minuscule posets to build doubly infinite representations of affine Kac-Moody
algebras,  and he remarked that these representations "looked like" the minuscule representations of simple Lie
algebras.

F5.2   $  Strayer defined a representation of  g´  built from a  Γn-colored poset  P
to be     P-minuscule   if all of the eigenvalues for all of the  Hi  are  ±1 or 0.

The minuscule representations of the simple Lie algebras also have all of their eigenvalues equal to ±1 or 0,  and the
labels in the most interesting Numbers Games are all ±1 or 0.

Recall that Strayer improved Green's definition of "minuscule" poset.

$  Here's the main result of Strayer's thesis:

Let  Γn  be a connected simple graph.

A  P-minuscule representation of the derived Kac-Moody algebra  g´  for  Γn  can be built from a locally finite  Γn-
colored poset  P  if and only if  P  is a minuscule  Γn-colored poset.

$  Strayer's result holds uniformly for finite and infinite minuscule posets.

This completes my presentation of the representation theory motivation for considering infinite posets.



Part G:  Classifying Infinite Minuscule Structures

In this last part of my talks I'd like to describe some current and future work with my student Michael Strayer;  we
want to classify all of the kinds of structures that I've been talking about yesterday and today.

G1:  Minuscule Abstract Representations of Kac-Moody Algebras?

G1.1   $  I would like to now begin to present Realm-V:

Can we develop an "abstract" notion of a minuscule representation for Kac-Moody algebras?

By this I mean one that does not refer á priori to a poset.

The minuscule representations of the simple Lie algebras are widely known.

They are usually defined in terms of their highest weights.

Sometimes it is said:  "For the Kac-Moody algebras that aren't the simple Lie algebras (the infinite ones) there are no
minuscule representations."

$  Green's representations "look like" the minuscule representations of simple Lie algebras in many ways.

But they don't have highest weights.

Strayer's notion of "P-minuscule" refered to a poset  P  that was already on hand.

G1.2   $  But what if there is not already a poset  P  at hand?

   Problem.     Formulate a definition of "minuscule" for "abstract"representations of Kac-Moody algebras.

This definition should refer only to pre-existing representation theory concepts.

$  We propose the following definition:

   Def'n.     A weight representation  ϕ  of a Kac-Moody algebra  g  is    minuscule   if:
(1)  all of its weight spaces are 1-dimensional,
(2)  its weight diagram  ∏(ϕ)  under the standard root ordering is a connected poset,  and
(3)  all of the eigenvalues for the images of the algebra generators  hi  acting on the weight vectors for  ϕ  are ±1 or 0.

When the algebra  g  is a simple Lie algebra,  this definition re-produces the usual minuscule representations.

$  We believe we can prove that Green's representations are the only infinite dimensional Kac-Moody representations
that satisfy this definition.



G2:  Overview of All Classifications, Three Classification Problems

G2.1   $  Can these minuscule abstract representations of Kac-Moody algebras be classified?

How about the the infinite minuscule structures in our other four realms …
can they be classified?

If so,  would the statements and proofs of these five classifications be related to each other?

$  In all five realms the finite minuscule structures have been listed.

In Realm-III all of the infinite  Γn-colored minuscule posets have been listed;
I presented the list earlier.

In Realm-IV,  Strayer can apply the Realm-III classification to list all of the possible  P-minuscule representations of a
Kac-Moody algebra  g.

$  Strayer and I are currently classifying the possible infinite minuscule  Γn-colored structures
in the other three realms:  I, II, and V.

G2.2   $  To state our conjectured classifications,  I need a few more definitions:

A set of integers is   tiny   if it is a subset of  {+1,0,–1}.

A labeling  λ  of  Γn  is   tiny   if its set of labels is tiny.

An integral weight  λ ∈ h*´  for the Weyl group for  Γn  is   tiny   if its coefficients with respect to the fundamental
weights are tiny.

$  I'll now state the classification problems that Strayer and I are currently working on:

   Problem-I:     List every graph  Γn  with a tiny labeling such that the labelings arising in the Extended Augmented
Numbers Game from that tiny reference labeling are tiny.

   Problem-II:     List every graph  Γn  with a tiny labeling such that the labelings in the Kac-Moody Weyl group orbit
based at that tiny labeling have only tiny labels.

   Problem-V:     Classify the abstract minuscule representations of the Kac-Moody algebra  g  for  Γn.



G3:  Conjecture-Theorems and Their Equivalence

G3.1   $  We believe we will soon finish the proofs of the following three statements:

The only "tiny" structures that can arise in Problems I, II, and V are those that can generated from the labeled affine
Dynkin diagrams  Γn  that I presented earlier:

G3.2   $  In Realms I and II,  any tiny labeling/integral weight that arises can be used as the reference labeling or
orbit "base point".

In Problem V,  we choose a "zero level" for a certain element of the Cartan subalgebra  h.

$  It is easy to see that Problems I and II are equivalent using a Kac-Moody version of the relationship described
yesterday for finite Weyl groups.

Showing the equivalence of Problems II and V appears to be straightforward,
using some standard facts from Kac-Moody representation theory.

$  So we will only need to solve Problem-I,  for the Numbers Game.

Okay, so we're now done witht the entire outline!


